Acta Cryst. (1969). B25, 2161
The crystal structure of KBF . * By George Brunton, Reactor Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A.
(Received 13 March 1969)
The crystal structure of KBF_{4} is isostructural with that of KClO_{4} and the $\mathrm{B}-\mathrm{F}$ bond distances (1.378 to $1 \cdot 391 \AA$) are almost identical to those published for NaBF_{4}.

Introduction

The crystal structure of the low temperature polymorph of KBF_{4} is isostructural with that of KClO_{4} and the lattice parameters $a_{0}=8.6588 \pm 0.0005, b_{0}=5 \cdot 4800 \pm 0.0004, c_{0}=$ $7.0299 \pm 0.0008 \AA$ at $24^{\circ} \mathrm{C}$ are in better agreement with the $\mathrm{KC1O}_{4}$ lattice parameters (Mani, 1957) than those previously published for KBF_{4} by Ballanca \& Sgarlata (1951) and Pesce (1930). The calculated density is $2 \cdot 5067 \mathrm{g.cm}^{-3}$ and $Z=4$.
The crystal structure of KBF_{4} has been refined as part of the basic research on the properties of alkali metal fluoroborates, mixtures of which are being investigated as molten salt coolants for nuclear breeder reactors (ORNL, 1967).

Experimental

Euhedral crystals of KBF_{4} were grown from a saturated solution of purified KBF_{4} and HF in water. The crystals

* Research sponsored by the U.S. Atomic Energy Commission under contract with Union Carbide Corporation.
were prepared by L. O. Gilpatrick of the Reactor Chemistry Division and a chemical analysis of the crystals gave (in weight per cent): $\mathrm{K}, 30 \cdot 9$; $\mathrm{B}, 8 \cdot 66 ; \mathrm{F}, 60 \cdot 3 ; \mathrm{H}_{2} \mathrm{O}, 0 \cdot 20$; theoretical: $\mathrm{K}, 31.06 ; \mathrm{B}, 8 \cdot 59 ; \mathrm{F}, 50 \cdot 38$. The crystals contain 210 ppm of oxygen as measured by BrF_{3} displacement. The oxygen is probably present as OH^{-}.

A small crystal $0.145 \times 0.139 \times 0.323 \mathrm{~mm}$ bounded by the forms $\{101\}$ and $\{210\}$ was mounted on a Picker fourcircle goniostat, and the reflection intensities were measured with a scintillation-counter detector using unfiltered $\mathrm{CuK} \alpha$ radiation. Independent reflections out to $2 \theta=145^{\circ}$ were measured by the 2θ scan technique (Busing, Ellison, Levy, King \& Roseberry, 1968).

The conditions for reflection are: $h k l$, no conditions; $0 k l, k+l=2 n$; and $h k 0, h=2 n$; consistent with Pnma (No. 62) and Pna2 (No. 33). The lattice parameters were determined by least-squares adjustment from 31 Mo $K \alpha_{1}$ reflections (Mo $K \alpha_{1}=0.709260 \AA$).

The structure was refined by iterative least-squares with a modification of the Busing, Martin \& Levy (1962) computer program. The starting parameters were the centrosymmetric set suggested by Wyckoff (1965) and the results

Table 1. Atomic parameters for KBF_{4}
The number in parentheses is the standard error in terms of the last significant digit, as derived from the variance-covariance matrix.

	$\times 10^{4}$	$y 104$	$z 104$	$\beta_{11} 10^{4 *}$	$\beta_{22} 10^{4}$	$\beta_{33} 10^{4}$	$\beta_{12} 10^{4}$	$\beta_{13} 10^{4}$	$\beta_{23} 10^{4}$
K	$1844 \cdot 9$ (7)	2500	1611 (2)	37 (2)	183 (5)	116 (3)	0	-1.4(8)	0
B	626 (4)	2500	6897 (7)	38 (5)	142 (12)	111 (9)	0	-9 (5)	0
F(1)	1789 (3)	2500	5560 (4)	110 (4)	287 (9)	153 (7)	0	50 (4)	0
F(2)	-814 (3)	2500	6049 (5)	75 (4)	385 (11)	245 (7)	0	-71 (4)	0
F(3)	774 (2)	440 (3)	8039 (3)	92 (3)	173 (6)	165 (5)	-1 (3)	8 (2)	42 (4)

Fig. 1. A stereoscopic drawing of the structure of KBF_{4}. One fourth of a unit cell is outlined.

Table 2. The interatomic distances and $\mathrm{F}-\mathrm{B}-\mathrm{F}$ angles for KBF_{4} The number in parentheses on the interatomic distances is $\sigma \times 10^{4}$ and on the angles $\sigma \times 10$.

K-F(2)	2.758 (3) \AA	K-F(1)	2.776 (3) \AA
$2[\mathrm{~K}-\mathrm{F}(3)$]	2.793 (2)	$2[\mathrm{~K}-\mathrm{F}(3)$]	2.803 (2)
$2[\mathrm{~K}-\mathrm{F}(3)$]	$2 \cdot 905$ (2)	$2[\mathrm{~K}-\mathrm{F}(1)$]	3.075 (2)
B-F(1)	1.378 (5)	B-F(2)	1.382 (4)
2[B-F(3)]	1.391 (3)	$2[\mathrm{~F}(1)-\mathrm{F}(3)]$	2.255 (3)
$F(1)-F(2)$	$2 \cdot 280$ (4)	$2[\mathrm{~F}(2)-\mathrm{F}(3)$]	$2 \cdot 263$ (3)
$\mathrm{F}(1)-\mathrm{B}-\mathrm{F}(2)$	111.4 (4) ${ }^{\circ}$	$2[\mathrm{~F}(1)-\mathrm{B}-\mathrm{F}(3)$]	109.0 (2) ${ }^{\circ}$
$2[F(2)-B-F(3)]$	109.4 (2)	$\mathrm{F}(3)-\mathrm{B}-\mathrm{F}(3)$	108.5 (4)

Table 3. Observed and calculated structure factors $\times 10$ for KBF_{4}

are listed in Table 1. Scattering factors for K, B, and F were taken from Cromer \& Waber (1965). The quantity minimized by the least-squares program was $\Sigma w\left|\left|s F_{o}^{2}\right|-\right.$ $\left|F_{c}^{2}\right|^{2}$ with weights, w, equal to the reciprocals of the variances which were estimated from the empirical equation:

$$
\sigma^{2}\left(F_{o}^{2}\right)=\left[T+B+(0 \cdot 05(T-B))^{2}\right] /\left[A(\mathrm{Lp})^{2}\right]
$$

where $T=$ total counts, $B=$ background counts, $A=$ absorption correction ($\mu=15 \cdot 6 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} K \alpha$), and $\mathrm{Lp}=$ Lorentz and polarization (Brown \& Levy, 1964). Anisotropic temperature factors were calculated for all atoms. A stereoscopic drawing of one K atom and its BF_{4} nearest neighbors is shown in Fig. 1.

The discrepancy indices are

$$
R_{1} \equiv \Sigma| | F_{o}^{2}\left|-\left|F_{c}^{2}\right|\right| / \Sigma\left|F_{o}^{2}\right|=0.0682
$$

and $R_{2} \equiv \Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|=0 \cdot 0384$, for 348 independent reflections. The standard deviation of an observation of unit weight, $\left[\Sigma w\left(F_{0}-F_{c}\right)^{2} /\left(n_{0}-n_{v}\right)\right]^{1 / 2}$, is 1.878 where n_{0} is the number of reflections and n_{v} the number of variables. The interatomic distances and F-B-F angles are listed in Table 2 and the observed and calculated structure factors are listed in Table 3. An extinction correction was made on F_{c} by the method suggested by Zachariasen (1967).

The K^{+}ion is coordinated by $8 \mathrm{~F}^{-}$ions at distances less than $3.0 \AA$ and by two more F^{-}ions at $3.075 \AA$. The K^{+} polyhedron shares edges with three and corners with four $\mathrm{B}-\mathrm{F}_{4}$ tetrahedra. The $\mathrm{B}-\mathrm{F}_{4}$ tetrahedra are slightly irregular with tetrahedral angles of 108.5° to 111.4° and $\mathrm{B}-\mathrm{F}$ distances 1.378 to $1.391 \AA$, Table 2. The B-F distances are
almost equal to the B-F distances for NaBF_{4} (1.386 and $1.392 \pm 0.002 \AA$) found by Brunton (1968) from a refinement of the NaBF_{4} structure proposed by Weiss \& Zahner (1967). A calculated B-F single bond distance is $1.37 \AA$ (Pauling, 1960).

References

Ballanca, A. \& Sgarlata, F. (1951). Rend. Soc. Mineral. Ital. 7, 42.
Brown, G. M. \& Levy, H. A. (1964). J. Phys. 25, 497.
Brunton, G. (1968). Acta Cryst. B24, 1703.
Busing, W. R., Ellison, R. D., Levy, H. A., King, S. P. \& Roseberry, R. T. (1968). USAEC Report ORNL4143, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). USAEC Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104. Mani, N. V. (1957). Proc. Indian Acad. Sci. 46A, 143.
Pauling, L. (1960). Nature of the Chemical Bond, 3rd Ed. p. 318. Ithaca: Cornell Univ. Press.

Pesce, B. (1930). Gazz. Chim. Ital. 60, 936.
ORNL (1967). USAEC Report ORNL-4191, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Weiss, A. \& Zohner, K. (1967). Phys. Stat. Sol. 21, 257.
Wyckoff, R. W. G. (1965). Crystal Structures, Vol. 3, p. 48. New York: John Wiley.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558.

